
Continuous Integration with Gitlab

Tony Wildish

Cloud Bioinformatics Application Architect
EMBL-EBI

Introduction to Gitlab

• Gitlab for Continuous Integration/Continuous Deployment

• Hands-on session
• A ‘hello world’ tour of the basics

• Not covered:
• Setting up your own runners
• ‘AutoDevOps’: awesome for DevOps environments
• https://docs.gitlab.com/ee/topics/autodevops/

• Pre-requisites:
• Basic knowledge of git and an understanding of docker

- 2 -

https://docs.gitlab.com/ee/topics/autodevops/

Gitlab is…

• A git-based code hosting service
• Like github.com, bitbucket.com, and many others
• SCM, Wiki, issue-tracking, project/team-management…

• A continuous integration (CI) platform
• Like Travis, Jenkins, and others
• You commit/tag code, gitlab builds, tests, packages and deploys it
• You tell it how! That’s what this talk is about

• Distributed builds, can use many platforms
• Laptop/desktop, cloud (AWS, GCP)
• Can even use multiple platforms in the same build

- 3 -

Gitlab components

• Gitlab server
• The hosting service
• Project management components

• CI build system management (how ‘runners’ are used)

• Gitlab runners
• User-space daemons that execute builds

• Driven by the server on pushing to the repository

• Highly configurable, can have many runners per repo, different compilers, runtimes, OS…

• Can run anywhere: laptop, cloud, Embassy

- 4 -

Gitlab server

• Two editions
• CE: Community Edition (free, self-hosted)

• EE: Enterprise Edition (paid, self-hosted or cloud-hosted)

• gitlab.com (EE, free)
• Unlimited repositories, private or public

• 10 GB disk space per project

• Mirroring external public repositories has up to an hours latency

• We have the Enterprise Edition at gitlab.ebi.ac.uk
• Requires 2FA, which is a pain for getting started, so we use gitlab.com today

- 5 -

Gitlab runner

• Can run on any platform
• Laptop, AWS/GCP, Embassy etc

• Configure runners per project
• Can share runners between projects, or be project-specific

• gitlab.com provides shared runners, all ready to use!

• gitlab.ebi.ac.uk has shared runners, but you are expected to provide your own for
production deployments

• Specify runners capabilities with tags when you register them
• E.g. gcc/python/perl version, system capabilities (RAM, cores)

- 6 -

Gitlab runner

• At build-time
• Server chooses runners based on tags in config file – per step!

• Server launches as many build processes as required

• Can store products from each step back to server, for inspection later on or for use
in subsequent steps

• Each runner can run a custom workflow
• Infinitely configurable, per project

• Workflow specified in YAML config file in the project repository

- 7 -

Gitlab runner

• Security
• Gitlab runners have significant security implications
• Will dutifully execute all instructions from the .gitlab-ci.yml file
• Malicious users can inject dangerous commands
• E.g. rm –rf $HOME

• Control who has access to the .gitlab-ci.yml file
• Use fork/pull model, not direct commit

• Run runners as unprivileged users on dedicated infrastructure
• Not as you in your home directory!

- 8 -

Gitlab and Docker

• Many possible combinations…
• Q: Can I do X with Docker and Gitlab? A: Yes, for all X!

• Run Gitlab Runner in a Docker container

• Pull/run Docker containers to execute your CI job
• Use different docker containers per step

• Build Docker containers inside your CI job
• Push them to Gitlab Container Registry or elsewhere

• Gitlab Container Registry
• Integrated Docker registry, upload a container from your CI job
• Can automatically tag with branch name/version etc

- 9 -

The CI configuration file

• Standard YAML
• .gitlab-ci.yml, in the top directory of your git repository
• Describes pipelines which consist of stages, run by one or more steps
• Each stage has a specific purpose: build, test, deploy…
• Each stage can have its own tags (i.e. Its own required environment)
• Each stage can produce artifacts/re-use from other stages
• Stages run sequentially, steps can run in parallel
• Each step in a stage must complete before the next stage can start
• Each step in a stage must succeed or the whole pipeline will fail

• Similar to makefiles in some ways
• Specify dependencies & actions, not explicitly coding workflows

- 10 -

- 11 -

Define environment variables
for use in the build

Executed before
every step

Define the stages of this
build pipeline

This example: sets
DOCKER_IMAGE

environment variable,
used later

$CI_*, defined by Gitlab

- 12 -

Compile step, executes
the ‘build’ stage

The build commands: either inline, or a
script in your git repository

Tell gitlab to keep the intermediate
build products for one week

- 13 -

Run step executes the ‘test’ stage.
Depends on the ‘compile’ step, gets its
artifacts automatically

Only runs for git-
tagged versions

- 14 -

Install step runs the ‘deploy’ stage.
Runs a docker container to build a

docker image of our code, pushes the
image to the gitlab docker registry

Executed after every step

- 15 -

- 16 -

- 17 -

Clone repository

‘before’ script

Run the compile step

‘after’ script

Uploading artifacts

- 19 -

Secrets
• Q: How do you pass a database password to a CI/CD pipeline?

• 1) Hard-code it in the repository where anyone can see it?

• 2) Use a gitlab variable to pass it to the runner without exposing it?

20

Secrets
• Q: How do you pass a database password to a CI/CD pipeline?

• 1) Hard-code it in the repository where anyone can see it?

• 2) Use a gitlab variable to pass it to the runner without exposing it?

• Pass an environment variable, or a file with preset contents

• Settings -> CI/CD -> Variables -> Expand
• => Exercise 7

21

Other gitlab features

• API, programmable interface to Gitlab
• https://docs.gitlab.com/ee/api/

• Build hooks
• Trigger actions on external services other than gitlab
• Similar capabilities on github, bitbucket

• Trigger actions in gitlab from external service
• E.g. nightly build, regardless of commits

• Mirroring repositories
• Master repository in bitbucket/github?
• Can mirror to gitlab, automatically, transparently

- 22 -

https://docs.gitlab.com/ee/api/

AutoDevOps

• AutoDevOps is a fairly new feature from Gitlab
• Detects the language, application style and structure of your project

• Automatically defines a CI/CD pipeline for it

• Can automatically build/test/deploy, right through to production

• Highly configurable

• Not covered today
• See https://docs.gitlab.com/ee/topics/autodevops/ for more

• The video there is worth it

23

https://docs.gitlab.com/ee/topics/autodevops/

Best practices, gotchas…
• Be careful with environment variables

• Gitlab sets some secret environment variables (API keys etc) for you to use in your builds
• If you echo them to your logfiles, they will be visible on the web

• Check your YAML configuration file for errors
• Your-project-page -> CI/CD -> Pipelines -> “CI Lint” (top-right): can edit live and validate

• Set your artifacts to expire
• Stuff you want to keep should be properly deployed, e.g. in a Docker image

• Keep your build environments clean, simple
• Unix configure, make, make-test, make-install is a de-facto standard
• Tag your own runners to specify requirements, avoid complex runtime scripts

• Control access to your repositories
• Don’t give out any tokens of any sort, until you’ve thought through the consequences
• Don’t give others admin/developer-access to the project, use the fork/pull model instead

- 24 -

Exercises

• Go to http://bit.ly/resops-2019

• Click on ‘Gitlab Practical’
• Follow the exercises

25

http://bit.ly/resops-2019

