Continuous Integration with Gitlab

Tony Wildish
Cloud Bioinformatics Application Architect
EMBL-EBI

g
eselelele

EI\ ’IB - B 020%20%0%¢
L E I 0g 00500

> e

Introduction to Gitlab

* Gitlab for Continuous Integration/Continuous Deployment

* Hands-on session
* A ‘hello world’ tour of the basics

* Not covered:
 Setting up your own runners
* ‘AutoDevOps’: awesome for DevOps environments
 https://docs.qgitlab.com/ee/topics/autodevops/

* Pre-requisites:
- Basic knowledge of git and an understanding of docker

-2- EMBL-EBI

https://docs.gitlab.com/ee/topics/autodevops/

Gitlab is...

* A git-based code hosting service
 Like github.com, bitbucket.com, and many others
- SCM, Wiki, issue-tracking, project/team-management...

* A continuous integration (Cl) platform
« Like Travis, Jenkins, and others
* You commit/tag code, gitlab builds, tests, packages and deploys it
e You tell it how! That's what this talk is about

 Distributed builds, can use many platforms
e Laptop/desktop, cloud (AWS, GCP)

e Can even use multiple platforms in the same build

-3- EMBL-EBI

Gitlab components

* Gitlab server
* The hosting service
* Project management components

 ClI build system management (how ‘runners’ are used)

* Gitlab runners
» User-space daemons that execute builds
« Driven by the server on pushing to the repository
 Highly configurable, can have many runners per repo, different compilers, runtimes, OS...

« Can run anywhere: laptop, cloud, Embassy

-4 - EMBL-EBI

Gitlab server

° Two editions
« CE: Community Edition (free, self-hosted)

- EE: Enterprise Edition (paid, self-hosted or cloud-hosted)
- gitlab.com (EE, free)
e Unlimited repositories, private or public

e 10 GB disk space per project

e Mirroring external public repositories has up to an hours latency

°* We have the Enterprise Edition at gitlab.ebi.ac.uk

« Requires 2FA, which is a pain for getting started, so we use gitlab.com today

-5- EMBL-EBI

Gitlab runner

° Can run on any platform
« Laptop, AWS/GCP, Embassy etc

« Configure runners per project
e Can share runners between projects, or be project-specific
e gitlab.com provides shared runners, all ready to use!

« gitlab.ebi.ac.uk has shared runners, but you are expected to provide your own for
production deployments

* Specify runners capabilities with tags when you register them

* E.g. gcc/python/perl version, system capabilities (RAM, cores)

-6 - EMBL-EBI

Gitlab runner

* At build-time
« Server chooses runners based on tags in config file — per step!
« Server launches as many build processes as required

« Can store products from each step back to server, for inspection later on or for use
In subsequent steps

* Each runner can run a custom workflow
* Infinitely configurable, per project

« Workflow specified in YAML config file in the project repository

-7 - EMBL-EBI

Gitlab runner

* Security

 Gitlab runners have significant security implications
- Will dutifully execute all instructions from the .gitlab-ci.yml file

- Malicious users can inject dangerous commands
 E.g.rm —rf SHOME

« Control who has access to the .gitlab-ci.yml file
» Use fork/pull model, not direct commit

* Run runners as unprivileged users on dedicated infrastructure
* Not as you in your home directory!

-8- EMBL-EBI

Gitlab and Docker

°* Many possible combinations...
* Q: Can | do X with Docker and Gitlab? A: Yes, for all X!

* Run Gitlab Runner in a Docker container

* Pull/run Docker containers to execute your CI job
« Use different docker containers per step

* Build Docker containers inside your Cl job
* Push them to Gitlab Container Registry or elsewhere

* Gitlab Container Registry
* Integrated Docker registry, upload a container from your CI job
« Can automatically tag with branch name/version etc

-9- EMBL-EBI

The CI configuration file

e Standard YAML
- .gitlab-ci.yml, in the top directory of your git repository
« Describes pipelines which consist of stages, run by one or more steps
- Each stage has a specific purpose: build, test, deploy...
- Each stage can have its own tags (i.e. Its own required environment)
- Each stage can produce artifacts/re-use from other stages

- Stages run sequentially, steps can run in parallel

e Each step in a stage must complete before the next stage can start
e Each step in a stage must succeed or the whole pipeline will fail

* Similar to makefiles in some ways
« Specify dependencies & actions, not explicitly coding workflows

-10 - EMBL-EBI

clone
wildish

tiny-test
$CI_REGISTRY/$REGISTRY_USER/$APPLICATION: latest
$CI_REGISTRY/$REGISTRY_USER/$APPLICATION:$CI BUILD_REF_NAME

overla
—— every step

echo "Starting..."

export DOCKER_IMAGE=$RELEASE_IMAGE
if ["$CI_BUILD_REF_NAME" == "master"]; then export DOCKER_IMAGE=$LATEST_IMAGE; fi
echo "Build docker image $DOCKER_IMAGE"

build build pipeline

test
dep loy

environment variable,
used later

“11- EMBL-EBI i

- build

- test
— deploy Compile step, executes
the ‘build’ stage

build
gcc:6

Tell gitlab to keep the intermediate
dind build products for one week

"${CI_BUILD_NAME} ${CI_BUILD_REF_NAME}"
true
1 week

The build commands: either inline, or a
script in your git repository

12- EMBL-EBIi

Run step executes the ‘test’ stage.
Depends on the ‘compile’ step, gets its
artifacts automatically

test
- compile Only runs for git-
- tags tagged versions
— echo "Testing application. First, list the files here, to show we have the git repo + the artifacts fro
- s -1
— echo 'Now try running it
- ./hello

- echo "If that failed you won't see this because you'll have died already"

13- EMBL-EBIii

Runs a docker container to build a
docker image of our code, pushes the
image to the gitlab docker registry

deploy
docker: latest

- dind
— compile

— docker login —-u $CI_REGISTRY_USER —-p $CI_REGISTRY_PASSWORD $CI_REGISTRY
— echo Building $DOCKER_IMAGE

— docker build -t $DOCKER_IMAGE .

— echo Deploying $DOCKER_IMAGE

— docker push $DOCKER_IMAGE

/[Executea aﬁer every step

— echo "Congratulations, this step succeeded"

-14- EMBL-EBI i

Activity Milestones Snippets Search or jump to... Q

Tony Wildish > tiny-test > Pipelines

All 3 Pending 0 Running 0 Finished 3 Branches Tags Run Pipeline

Status Pipeline Triggerer Commit Stages

#27194 ¥ new_feature -o- fel85fch & 00:02:23
[@ passed] Q Q Initial import @ @ £ just now
#27150 é€vl.0 o fel85fchb & 00:02:07
[) passed] Q Q Initial import @ @ @ M 3 hours ago

#27149 P master -o- fel85fcb & 00:02:12
d) e 1
[) passe] Q Q Initial import @ @ M 3 hours ago

-15 - EMBL-EBI

Tony Wildish > tiny-test > Pipelines > #27150

[© passed] Pipeline #27150 triggered 6 minutes ago by # Tony Wildish

Initial import

® 3jobsfor v1.0 in 2 minutes and 7 seconds

n EED

o fel85fcb - (qm

Pipeline Jobs 3

Build Test Deploy

EMBL-EBI i

v Running on runner-ffoEbPxD-project-1359-concurrent-0 via d5831fbffcf5...

v Fetching changes with git depth set to 50...
Initialized empty Git repository in /builds/wildish/tiny-test/.git/
Created fresh repository.
From https://gitlab.ebi.ac.uk/wildish/tiny-test

*x [new tag] v1.0 -> v1.0
Checking out fel85fcbhb as v1.0...

Skipping Git submodules setup

Starting...

$ export DOCKER_IMAGE=$RELEASE_IMAGE
$ if ["$CI_BUILD_REF_NAME" == "master"]; then export DOCKER_IMAGE=$LATEST_IMAGE; fi
$ echo "Build docker image $DOCKER_IMAGE"

Build docker image dockerhub.ebi.ac.uk/wildish/tiny-test:v1.0

echo "#define TODAY \"“date \"" | tee hello.h

#define TODAY "Thu Jul 25 11:19:23 UTC 2019"
cc hello.c -static -o hello

v Running after script...
$ echo "Congratulations, this step succeeded"

Congratulations, this step succeeded

untracked: found 2 files
Uploading artifacts to coordinator... ok id=73621 responseStatus=201 Created token=4Vs26uR8

17 - JL-EBI i

Job succeeded

T tiny-test Tony Wildish > tiny-test > Tony Wildish / tiny-test

S [, Container Registry

With the Docker Container Registry integrated into GitLab, every project can have its own space to st
® Repository

A tonywildish/tiny-test (p®

(D Issues 0
T Tag ID Si
i1 Merge Requests 0 a9 a0 €
latest @ f32d1a941 44.91 MiB
4 Cl/CD
vi.0 @ 1594696dd 44.91 MiB
B Packages
List

Container Registry

19- EMBL-EBIi

Secrets

* Q: How do you pass a database password to a CI/CD pipeline?
- 1) Hard-code it in the repository where anyone can see it?

- 2) Use a gitlab variable to pass it to the runner without exposing it?

20 EMBL-EBI

Secrets

* Q: How do you pass a database password to a CI/CD pipeline?

- 2) Use a gitlab variable to pass it to the runner without exposing it?

* Pass an environment variable, or a file with preset contents
* Settings -> CI/CD -> Variables -> Expand

* => EXxercise 7

Type Key Value State Masked

Variable o DB_PASSWORD *Rkkokkkokokkkkk Protected G’ Masked

Masked

21 EMBL-EBI

File ¢ SECRET_KEY woncnecsssssssss | Protected ()

Other gitlab features

* API, programmable interface to Gitlab
« https://docs.qitlab.com/ee/api/

* Build hooks

 Trigger actions on external services other than gitlab
e Similar capabilities on github, bitbucket

 Trigger actions in gitlab from external service
* E.g. nightly build, regardless of commits

* Mirroring repositories
« Master repository in bitbucket/github?
« Can mirror to gitlab, automatically, transparently

-22 - EMBL-EBI

https://docs.gitlab.com/ee/api/

AutoDevOps

* AutoDevOps is a fairly new feature from Gitlab
« Detects the language, application style and structure of your project
« Automatically defines a CI/CD pipeline for it
« Can automatically build/test/deploy, right through to production
« Highly configurable

° Not covered today

« See https://docs.qgitlab.com/ee/topics/autodevops/ for more

 The video there is worth it

23 EMBL-EBI

https://docs.gitlab.com/ee/topics/autodevops/

Best practices, gotchas...

* Be careful with environment variables
« Gitlab sets some secret environment variables (API keys etc) for you to use in your builds
« If you echo them to your logdfiles, they will be visible on the web

* Check your YAML configuration file for errors
* Your-project-page -> CI/CD -> Pipelines -> “Cl Lint” (top-right): can edit live and validate

* Set your artifacts to expire
- Stuff you want to keep should be properly deployed, e.g. in a Docker image

* Keep your build environments clean, simple
« Unix configure, make, make-test, make-install is a de-facto standard
« Tag your own runners to specify requirements, avoid complex runtime scripts

* Control access to your repositories
- Don'’t give out any tokens of any sort, until you’ve thought through the consequences
- Don’t give others admin/developer-access to the project, use the fork/pull model instead

- 24 - EMBL-EBI

Exercises

* (Go to http://bit.ly/resops-2019
* Click on ‘Gitlab Practical’

* Follow the exercises

25 EMBL-EBI

http://bit.ly/resops-2019

