
Kubernetes 101

C.D. Tiwari | @cdtiwari

Cloud Bioinformatics Application Architect,

Technology & Science Integration

EMBL-EBI

What is Kubernetes?
• Container Orchestrator

• Provision, manage, scale applications
• Manage infrastructure resources needed by applications

• Volumes
• Networks
• Secrets
• And many many many more...

• Declarative model
• Provide the "desired state" and Kubernetes will make it happen

• What's in a name?
• Kubernetes (K8s/Kube): "Helmsman" in ancient Greek

Decouples Infrastructure and Scaling

• All services within Kubernetes are natively Load Balanced.

• Can scale up and down dynamically.

• Used both to enable self-healing and seamless upgrading or rollback
of applications.

Self Healing

Kubernetes will ALWAYS try and steer the cluster to its
desired state.

• Me: “I want 3 healthy instances of redis to always be
running.”

• Kubernetes: “Okay, I’ll ensure there are always 3 instances
up and running.”

• Kubernetes: “Oh look, one has died. I’m going to attempt
to spin up a new one.”

Kubernetes Resource Model
• A resource for every purpose
• Config Maps
• Daemon Sets
• Deployments
• Events
• Endpoints
• Ingress
• Jobs
• Nodes
• Namespaces
• Pods
• Persistent Volumes
• Replica Sets
• Secrets
• Service Accounts
• Services
• Stateful Sets, and more...

• Kubernetes aims to have the building blocks
on which you build a cloud native platform.

• Therefore, the internal resource model is the
same as the end user resource model.

Key Resources
• Pod: set of co-located containers

• Smallest unit of deployment
• Several types of resources to help manage them
• Replica Sets, Deployments, Stateful Sets, ...

• Services
• Define how to expose your app as a DNS entry
• Query based selector to choose which pods apply

Core Concepts

• Kubernetes has several core building blocks that make up the foundation of their
higher level components.

Basic K8s Object

• Pods

• Volume

• Persistent Vol, Persistent Vol Claims

• StorageClass

• ReplicaSet

• Deployment

Pods

• Atomic unit or smallest “unit of work” of
Kubernetes.

• Pods are one or MORE containers that share
volumes, a network namespace, and are a part
of a single context.

• They are also ephemeral

• Working with pods!!

https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/

Pod Examples

apiVersion: v1
kind: Pod
metadata:
name: pod-example

spec:
containers:
- name: nginx
image: nginx:stable-

alpine
ports:
- containerPort: 80

Key Pod Container Attributes

• name - The name of the container

• image - The container image

• ports - array of ports to expose. Can
be granted a friendly name and
protocol may be specified

• env - array of environment variables

• command - Entrypoint array (equiv to
Docker ENTRYPOINT)

• args - Arguments to pass to the
command (equiv to Docker CMD)

Container

name: nginx
image: nginx:stable-alpine
ports:
- containerPort: 80
name: http
protocol: TCP

env:
- name: MYVAR
value: isAwesome

command: [“/bin/sh”, “-c”]
args: [“echo ${MYVAR}”]

Storage

• Pods by themselves are useful, but many workloads require exchanging data
between containers, or persisting some form of data.

• For this we have
• Volumes,

• PersistentVolumes,

• PersistentVolumeClaims, and

• StorageClasses.

Volumes
• Storage that is tied to the Pod’s Lifecycle.

• A pod can have one or more types of volumes attached to it.

• Can be consumed by any of the containers within the pod.

• Survive Pod restarts; however their durability beyond that is
dependent on the Volume Type.

• Types of Volumes

https://kubernetes.io/docs/concepts/storage/volumes/

Volumes
• volumes: A list of volume objects to

be attached to the Pod. Every object
within the list must have it’s own
unique name.

• volumeMounts: A container
specific list referencing the Pod
volumes by name, along with their
desired mountPath.

apiVersion: v1
kind: Pod
metadata:
name: volume-example

spec:
containers:
- name: nginx
image: nginx:stable-alpine
volumeMounts:
- name: html
mountPath: /usr/share/nginx/html
ReadOnly: true

- name: content
image: alpine:latest
command: ["/bin/sh", "-c"]
args:
- while true; do

date >> /html/index.html;
sleep 5;

done
volumeMounts:
- name: html
mountPath: /html

volumes:
- name: html
emptyDir: {}

Persistent Volumes

• A PersistentVolume (PV) represents a storage resource.

• PVs are a cluster wide resource linked to a backing storage provider: NFS,
GCEPersistentDisk, RBD etc.

• Generally provisioned by an administrator.

• Their lifecycle is handled independently from a pod

• CANNOT be attached to a Pod directly. Relies on a PersistentVolumeClaim

• Ref: PersistentVolumes

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

PersistentVolumeClaims

• A PersistentVolumeClaim (PVC) is a namespaced request for
storage.

• Satisfies a set of requirements instead of mapping to a storage
resource directly.

• Ensures that an application’s ‘claim’ for storage is portable
across numerous backends or providers.

• Ref: PersistentVolumeClaims

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Persistent Volumes and Claims

Cluster
Users

Cluster
Admins

PersistentVolume
apiVersion: v1
kind: PersistentVolume
metadata:
name: nfsserver

spec:
capacity:
storage: 50Gi

volumeMode: Filesystem
accessModes:
- ReadWriteOnce
- ReadWriteMany

persistentVolumeReclaimPolicy: Delete
storageClassName: silver
mountOptions:
- hard
- nfsvers=4.1

nfs:
path: /exports
server: 172.22.0.42

•capacity.storage: The total amount of available storage.

•volumeMode: The type of volume, this can be either
Filesystem or Block.

•accessModes: A list of the supported methods of accessing
the volume. Options include:

• ReadWriteOnce
• ReadOnlyMany
• ReadWriteMany

•persistentVolumeReclaimPolicy: The behaviour for
PVC’s that have been deleted. Options include:

• Retain - manual clean-up
• Delete - storage asset deleted by provider.

•storageClassName: Optional name of the storage class that
PVC’s can reference. If provided, ONLY PVC’s referencing the
name consume use it.

•mountOptions: Optional mount options for the PV.

PersistentVolumeClaim
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: pvc-sc-example

spec:
accessModes:
- ReadWriteOnce

resources:
requests:
storage: 1Gi

storageClassName: silver

•accessModes: The selected method of
accessing the storage. This MUST be a
subset of what is defined on the target PV
or Storage Class.

• ReadWriteOnce
• ReadOnlyMany
• ReadWriteMany

•resources.requests.storage: The
desired amount of storage for the claim
•storageClassName: The name of the
desired Storage Class

Storage Classes

• Storage classes are an abstraction on top of an external storage resource
(PV)

• Work hand-in-hand with the external storage system to enable dynamic
provisioning of storage

• Eliminates the need for the cluster admin to pre-provision a PV

• Ref: Storage Classes

https://kubernetes.io/docs/concepts/storage/storage-classes/

StorageClass

1. PVC makes a request of the
StorageClass.

2. StorageClass provisions
request through API with
external storage system.

3. External storage system
creates a PV strictly satisfying
the PVC request.

4. provisioned PV is bound
to requesting PVC.

pv: pvc-9df65c6e-1a69-11e8-ae10-080027a3682b

uid 9df65c6e-1a69-11e8-ae10-080027a3682b

Storage Class
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

name: standard
provisioner: kubernetes.io/gce-pd
parameters:

type: pd-standard
zones: us-central1-a, us-central1-b

reclaimPolicy: Delete

•provisioner: Defines the ‘driver’ to be used for
provisioning of the external storage.
•parameters: A hash of the various configuration
parameters for the provisioner.
•reclaimPolicy: The behaviour for the backing
storage when the PVC is deleted.

• Retain - manual clean-up
• Delete - storage asset deleted by provider

ReplicaSet

• Primary method of managing pod replicas and their lifecycle.

• Includes their scheduling, scaling, and deletion.

• Their job is simple: Always ensure the desired number of pods are running.

• Ref: when to use a replicaset?

https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

ReplicaSet

•replicas: The desired number of
instances of the Pod.
•selector:The label selector for the
ReplicaSet will manage ALL Pod
instances that it targets.

apiVersion: apps/v1
kind: ReplicaSet
metadata:
name: rs-example

spec:
replicas: 3
selector:
matchLabels:
app: nginx
env: prod

template:
<pod template>

Deployment

• Declarative method of managing Pods via ReplicaSets.

• Provide rollback functionality and update control.

• Each iteration creates a unique label that is assigned to both the ReplicaSet and
subsequent Pods.

• Ref: Creating a Deployment

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Deployment

apiVersion: apps/v1
kind: Deployment
metadata:
name: deploy-example

spec:
replicas: 3
revisionHistoryLimit: 3
selector:
matchLabels:
app: nginx
env: prod

strategy:
type: RollingUpdate
rollingUpdate:
maxSurge: 1
maxUnavailable: 0

template:
<pod template>

•revisionHistoryLimit: The number of previous
iterations of the Deployment to retain.

•strategy: Describes the method of updating the Pods
based on the type. Valid options are Recreate or
RollingUpdate.

• Recreate: All existing Pods are killed before the
new ones are created.

• RollingUpdate: Cycles through updating the
Pods according to the parameters: maxSurge and
maxUnavailable.

Kubernetes Client

• CLI tool to interact with Kubernetes cluster

• Platform specific binary available to download

• https://kubernetes.io/docs/tasks/tools/install-kubectl

• The user directly manipulates resources via json/yaml
$ kubectl (create|get|apply|delete) -f myResource.yaml

Summary
• K8s objects are defined in YAML files;

• kubectl CLI is used to create/update/delete k8s objects.

• Pods are the smallest deployable units of computing that can be created and
managed in Kubernetes.

• Services is an abstraction which defines a logical set of Pods and a policy by
which to access them - sometimes called a micro-service.

• Storage is defined at the administrative level by storage classes.

• Storage is accessed in pods by claiming a persistent volume.

• ReplicaSet and Deployments provides higher-level management of pods.

Kubernetes Resources

• Main Website - http://kubernetes.io

• K8s Documentation

• Youtube Channel

• Many SIG’s(Special Interest Groups), Zoom

http://kubernetes.io/
https://kubernetes.io/docs/
https://www.youtube.com/channel/UCZ2bu0qutTOM0tHYa_jkIwg
https://kubernetes.io/community/

Thanks, Our team.

Steven
Newhouse

Tony
Wildish

David
Yuan C.D.

Sammy

