Porting Research Pipelines into Clouds

Architectural considerations

David Yuan, Ph.D.

Cloud Bioinformatics Application Architect

Technology and Science Integration

European Bioinformatics Institute, EMBL

Porting into clouds

Cloud overview – why?

Research pipelines

- Archive of sequence data, images, publications or ontology information
- Pipelines to analyse data
- Services to aggregate other research tools or databases

Good candidates for the cloud!

- You know your pinch-points.
- Cloud is mature and fastevolving.
- Lift-n-shift is possible.
- Being cloudnative provides benefit way over cost.

Pros

- Stable infrastructure
- Global collaboration by default
- Flexible resource management
- Potential cost reduction
- Latest and greatest technology stack

Cons

- Accounting model is very different.
- The whole field is still growing.
- Beginners often face steep learning curves.

Cloud overview – what?

* - as a Service

- Infrastructure as a Service (laaS)
 - OpenStack
 - GCP, AWS, MSA
 - RKE on OpenStack
 - GKE, EKS, AKS
- Platform as a Service (PaaS)
 - AWS Lambda
 - Azure App Service
- Software as a Service (SaaS)
 - AWS Route53
 - Oracle Autonomous Data Warehouse Cloud

Cloud overview – which?

Private cloud

- OpenStack
- RKE on OpenStack Public clouds
- GCP, AWS, MSA, etc. Different & changing all-thetime
- Different capabilities
- Very different costing structures

Cloud APIs

- Vendor API latest &
- Vendor APIS

 Vendor API latest greatest but vendor lock-in
 Open source API less up-to-date but more cloud-agnostic more cloud-agnostic
 - Both cloud centric

Pipelines in clouds

- Cloud-agnostic
- Cloud-native
- Easy-to-use for programmers and researchers

Well-known& proven Advantages over VM New paradigm CI/CD toolchains For best practice

Docker & K8S

- Well-known& proven
- Advantages over VMs

- For best practice Cloud consultancy
- Architectural advises
- Cloud-native designs

Cloud overview – container & orchestration

Docker & Kubernetes

- De-facto standards of runtime & orchestration
- Docker
 - Runtime architecture
 - Packaging tool
- Kubernetes
 - Orchestration engine

Benefit over VMs

- Light-weight
- Very high portability
- Seamless integration with CI/CD
- Across hardware boundaries
- Portability, scalability, high availability, disaster recovery & maintainability

Growing pains

- More difficult to use
- Dependent on VMs in some clouds
- Tricky integration with POSIX filesystems

Best practices

- KISS principle
- Security
 - Official Docker images
 - Non-root ID
- Compute, data & configuration
 - Stateless container
 - Data on storage
 - StatefulSet for configuration

Important considerations

Portability

- Poor portability between clouds
- Docker & K8S: De-facto standards
- Major decision to be made as early as possible

Scalability

- Cloud scaling up and scaling down limited by hardware
- <u>Docker & K8S</u>: vertical scaling, horizontal scaling, autoscaling across hardware boundary
- Storage IO often being the bottleneck

High availability

- Cloud better than traditional DCs
- K8S: ReplicaSet & StatefulSet across hardware boundary
- Shared POSIX filesystems: single point of failure

Disaster Recovery

- Double or triple redundancy: resilient to disaster
- Infrastructure-as-code: faster recovery
- K8S: clear separation of compute, configuration and data
- Shared POSIX filesystems: single point of failure

Maintainability

- Cloud usually no scheduled downtime
- K8S: eliminating scheduled downtime
- Rolling up upgrade K8S nodes, underlying hardware, application
- Auto-recovery built in

Cost, budget & funding

Current situation

- Genomic pipelines are usually funded by research grants.
- Funding agency is OK with capital cost but generally do not allow operational cost.
- Pipeline operators generally do not track usage metrics. There is little information to start estimating the cost in the cloud.

Cloud requirement

- Cloud deployments can outlive 3 – 5 year funding period.
- Public cloud requires little capital investment.
- Cloud providers charge by usage:
 - CPU cycles, active connections, ingress, egress, memory consumption, disk space used and duration, etc.
- Different cloud providers charge very different prices
 - Constantly changing

Advises

- When choosing a cloud platform
 - Go cloud-native to maximize benefit and to minimize cost
 - Take potential funding and cost issues into consideration
 - Shop around private or public clouds
- To avoid vendor lock-in
 - Ensure portability if technically possible
- To estimate operational cost
 - Compile usage metrics
 - Benchmark / profile pipelines

Data-driven architecture for research pipelines

Lift-n-shift vs. cloud-native

Pipeline M

- LSF cluster on OpenStack
- To provide much needed capacity for assembly
- Slurm cluster on Oracle cloud coming...

Pipeline R

- Kubernetes cluster with auto scaling
- Single user local application to multiuser application accessible globally
- Private persistent user workspace

Monitoring

Never flying blind

- Monitoring on pipelines is generally lacking
- K8S can be monitored with Prometheus + Grafana
- Kubernetes Dashboard is highly recommended for private K8S
- Monitoring for K8S on public clouds is poor in general

Summary

- Porting into clouds
 - Why, what, which & how particularly container & K8S
- Important considerations and why Kubernetes
 - Portability, scalability, high availability, disaster recovery & maintainability
- Special considerations for research pipelines
 - Cost budget & funding, data-driven architecture, lift-n-shift vs. cloud-native & monitoring
- Contact us
 - https://bit.ly/cc-doc
 - cloud-consultants@ebi.ac.uk