
Creating Containers with Docker

Tony Wildish

Cloud Bioinformatics Lead Architect
EMBL-EBI

wildish@ebi.ac.uk

Docker: What is it?

• Docker is a ‘container technology’
• Linux-specific
• Can’t run Max OSX or Windows in docker containers, but

• Can run docker containers on Mac OSX or Windows

• Shrink-wrap your software, run it on ~any Linux platform

• Not a virtual machine
• Similar, but more lightweight
• Smaller, faster to start, easier to maintain and manage

• Lighter on system resources, much more scalable!

2

Why use Docker?

• Portability:
• No need to rebuild your application for a new platform!
• Build a container once, run it anywhere

• AWS/GCP/…
• Stable s/w versions across all platforms, no runtime glitches

• Reproducibility:
• Because your s/w is stable, your pipeline is reproducible
• Run the exact same binaries again 10 years from now J L

3

What can you do with it?

• Computational workloads
• Use applications without having to install them

• Run your applications anywhere; clouds, HPC centres, laptops

• Reproducible pipelines

• Services
• Web portals/gateways (R/Shiny, Apache, Jupyter…)
• Persistent workflow manager interfaces (Airflow etc…)

• Continuous build systems (Gitlab…)

• For prototyping or for production running (databases etc)

4

Docker components

• The ‘docker’ command-line tool

• A bit of a kitchen-sink, your one-stop shop for everything docker

• The docker-daemon

• Works behind the scenes to carry out actions

• Manages container images, processes

• Builds containers when requested

• Runs as root, not a user-space daemon

• Docker.com

• All things docker: installation, documentation, tutorials

• Dockerhub.com

• Repository of docker containers. Many other repositories exist

5

Docker concepts

• Image

• A shrink-wrapped chunk of s/w + its execution environment

• Image tags

• Identify different versions of an image

• A namespace for separating your images from other peoples

• Image registry

• A place for sharing images with a wider community

• Dockerhub.com, plus some domain-specific registries

• Container

• A process instantiated from an image

• Dockerfile

• A recipe for building an image: download, compile, configure…

• Can share either the Dockerfile, or the image, or both

6

Docker images: layers and caching

• Images use the ‘overlay filesystem’ concept

• Image is built by adding layers to a base

• Each command in the Dockerfile adds a new layer

• Each layer is cached independently

• Layers can be shared between multiple images

• Change in one layer invalidates all following layers
• Forces rebuild (similar to ‘make’ dependencies…)

• Performance considerations

• Too many layers can impede performance

• Too few can cause excessive rebuilding

• Building production-quality images takes care, practice

7

Building a container: the Dockerfile

• A recipe for building a container

• Start with a base image, add software layer by layer

• Choosing the base image has a big effect on how large your container will be: go small!

• Add metadata describing the container

• Always a good idea

• Set the command to run when starting the container, map network ports, set environment
variables

• Not strictly needed for batch applications, useful for services (web apps, databases…)

8

FROM debian:jessie

LABEL lets you specify metadata, visible with 'docker inspect'
LABEL Maintainer="Tony Wildish, wildish@ebi.ac.uk" Version=1.0

I can set environment variables
ENV PATH /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

Commands to prepare the container
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update -y
RUN apt-get upgrade -y
RUN apt-get install --assume-yes apt-utils
RUN apt-get install -y python
RUN apt-get install -y python-pip
RUN apt-get clean all
RUN pip install bottle

Add local files
ADD hello.py /tmp/

open a port
EXPOSE 5000

specify the default command to run
CMD ["python", "/tmp/hello.py“]

9

FROM debian:jessie

LABEL lets you specify metadata, visible with 'docker inspect'
LABEL Maintainer="Tony Wildish, wildish@ebi.ac.uk" Version=1.0

I can set environment variables
ENV PATH /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

Commands to prepare the container
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update -y
RUN apt-get upgrade -y
RUN apt-get install --assume-yes apt-utils
RUN apt-get install -y python
RUN apt-get install -y python-pip
RUN apt-get clean all
RUN pip install bottle

Add local files
ADD hello.py /tmp/

open a port
EXPOSE 5000

specify the default command to run
CMD ["python", "/tmp/hello.py“]

Name+version

Contact info

Heavy lifting,
install base
tools before
our code

10

FROM debian:jessie

LABEL lets you specify metadata, visible with 'docker inspect'
LABEL Maintainer="Tony Wildish, wildish@ebi.ac.uk" Version=1.0

I can set environment variables
ENV PATH /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

Commands to prepare the container
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update -y
RUN apt-get upgrade -y
RUN apt-get install --assume-yes apt-utils
RUN apt-get install -y python
RUN apt-get install -y python-pip
RUN apt-get clean all
RUN pip install flask

Add local files
ADD hello.py /tmp/

open a port
EXPOSE 5000

specify the default command to run
CMD ["python", "/tmp/hello.py“]

Name+version

Contact info

Heavy lifting,
install base
tools before
our code

‘heavy’ base image: 123 MB

Lots of RUN commands
means lots of layers,
not ideal for the cache

Blind update – to what???
Container != VM

Final image
size: 360 MB

11

FROM alpine:3.5

LABEL Maintainer="Tony Wildish, wildish@ebi.ac.uk" Version=1.0

ENV PATH /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

RUN apk add --no-cache --update-cache --update python && \
apk add --no-cache --update py2-pip && \
pip install flask

ADD hello.py /tmp/

EXPOSE 5000

CMD ["python", "/tmp/hello.py"]

Final image
size: 53.2MB

Base image only 5 MB

Command
chaining with
&&, reduces

#layers
Install only

what we want

12

Other Docker directives

• WORKDIR

• Set the working directory inside the container

• CMD & ENTRYPOINT

• Very similar. If you get stuck with CMD, look at ENTRYPOINT

• ARG

• Pass information through the build chain (see exercises)

• USER

• Specify the user to run as inside the container (see exercises)

Building containers

• Build your container with ‘docker build’
• docker build -t user/package:version -f Dockerfile $dir
• Tag (-t) not obligatory, but very good idea

• Build ‘context’
• Everything in $dir is sent to the build as the ‘context’
• Use ‘.dockerignore’ file to exclude files/directories
• Can greatly speed build times – don’t send your entire home directory!

• Upload your container to Dockerhub (hub.docker.com)
• docker push user/package:version

14

Running containers

• Run a container with a default command
• docker run -i -t ubuntu
• Gives you a shell prompt, ‘exit’ or CTRL-D to quit

• -i -t -> use for interactive containers

• Run a container, specify the command explicitly
• docker run alpine:3.5 /bin/ls --l

• Set an environment variable
• docker run -e PATH=/bin:/usr/bin alpine:3.5 ls

15

Docker environments

• Development environment
• The environment in which you issue the ‘docker build’ command

• Build environment
• The Docker daemon, which executes the build for you

• Docker image
• The shrink-wrapped software, with its baked-in environment

• Docker container
• The running container, with a runtime environment derived from the image

Using metadata in containers

- 17 -

Development environment

Build context (docker daemon)
ARG VAR

Docker image
LABEL PQR=$VAR

Runtime environment (container)
ENV ABC=$VAR

docker inspect … | grep PQR

docker run… echo $ABC

docker build … --build-args VAR=123

How metadata goes from the command-
line to the build environment, to the
image, and to the running container

ARG

LABEL

ENV

See https://docs.docker.com/engine/reference/builder/#arg for more

https://docs.docker.com/engine/reference/builder/

Getting data in/out of containers

• Map external directories into a container
• docker run --volume /external/path:/internal/path

• E.g: list your current directory, the docker way!
• docker run --volume `pwd`:/mnt alpine:3.5 /bin/ls -l /mnt

• Can map multiple volumes
• Don’t nest them!

18

Finding pre-built containers

• Q: What’s the best way to build a container?
• A: Don’t! Find one that’s been built already!

• Q: How do you know which one to pick?
• A: trial and error L
• Look for official builds, #stars.
• depends on the details of how the container was built

> docker search spades
NAME DESCRIPTION STARS OFFICIAL AUTOMATED
nucleotides/spades 3 [OK]
achubaty/r-spades-devel Provides a testing environment for buildin... 0 [OK]
biodckrdev/spades Tools (written in C using htslib) for mani... 0 [OK]
ycogne/spades spades tools 0 [OK]
bioboxes/spades St. Petersburg genome assembler 0 [OK]
unlhcc/spades 0
[...]

19

Finding pre-built containers

• Alternative sources
• Dockerhub.com
• Same as ‘docker search’, but can get information about the build, instructions for use etc

• Google: “dockerfile NCBI blast”

• Ask the authors of your favorite package if they have a container already
• But check it before using, they may not be experts!
• docker images | grep <image> # check size
• docker history --no-trunc <image> # see how it was built
• Check their github repository!

20

Security

• Running as root
• Containers run as root by default, which is a major security risk. E.g, I cannot

normally list the /etc/sudoers file:
• > cat /etc/sudoers

cat: /etc/sudoers: Permission denied

• But using a docker container, I can!:
• > docker run --volume /etc:/mnt alpine:3.5 cat /mnt/sudoers | head -3

sudoers file.
##
This file MUST be edited with the 'visudo' command as root.

• Solution: run as non-root user

Run as non-root user

• > docker build -f Dockerfile.user -t user .

• > docker run user id
uid=1000(dudley) gid=1000(muggles)

• > docker run --volume /etc:/mnt user cat /mnt/sudoers | head -2
cat: can't open '/mnt/sudoers': Permission denied

FROM alpine:3.5

RUN apk update && apk add shadow && \
groupadd muggles && \
useradd -ms /bin/sh -G muggles dudley

USER dudley:muggles

Running as non-root user

• You can’t prevent the user from running as root if they launch the container
themselves
• > docker run –u root my-container …

• Best practices for services:
• Make sure you don’t give your container-user sudo permissions by mistake

• Create an unprivileged user in Dockerfile, in an unprivileged group
• If you’re mounting a filesystem, take user/group from the files you want there

• Change to that user before running the application

• Test that it works as expected – don’t assume it will, verify it

Singularity?

• Singularity (https://sylabs.io/docs/) is a Docker-compatible tool for building
and running containers
• Think of it as Docker minus the dangerous bits
• No running as root, runs only as user who creates it
• No exposing ports, not useful for running services

• Therefore very friendly to HPC centres, as well as the cloud
• Your cluster admin won’t let you run Docker, but will let you run Singularity

• If you’re running a workflow on an HPC farm, take a look at Singularity

https://sylabs.io/docs/

What goes into an image?

• What goes into a image, what doesn’t?

• No hard and fast rules, here are some guidelines

• Include…

• Anything ‘compiled’, i.e. anything with system dependencies

• Anything that needs ‘installing’ to run, that has portability issues

• i.e. if you can’t install it on another machine without effort, put it in a container

• Exclude…

• Simple bash/Perl/Python scripts => install from git etc
• Need Python/Perl modules? Include them in the container

• Anything static: big reference DBs etc

• Anything you could install by just copying to the filesystem

25

Dockerizing a pipeline:

• Q: how many containers for a pipeline with 25 steps?
• A: That depends on what your pipeline does

• L Not good: putting the whole pipeline in a single container
• Maintenance overhead, can’t optimize workflow
• Remember, a container is not a VM!

• J Better: one container per (related set of) executable(s)
• Your pipeline then invokes one container after another
• You can re-use containers built by other people

• E.g. One container for blast, including blastp, blastn, blastx, tblastn, tblastx is reasonable
• But do you use all of them? Or only one? Pick what you need!
• Do you need the other binaries or files that come with it?
• Blast+2.6.0: 26 MB/binary for those, but 980 MB total installation.

26

Best practices
• Security

• Don’t run services as root, create & use an unprivileged user for that purpose

• Document your containers
• Use LABEL to add metadata
• Tag your images: don’t use ‘latest’ by default

• Keep your containers small
• Start from small image, add only what you need - avoid VM-think!
• Use one container for one function/functionality

• Optimize your builds
• Put stable build-commands at the top of your Dockerfile
• Combine layers where possible (‘&&’ chaining)
• Check for bloat: (size of your code)/(size of image)

• Share your containers
• Put image in dockerhub, Dockerfiles in git, tell us, tell your colleagues...

27

Summary

• Docker containers allow great portability
• Because there’s nothing to port anymore!

• Building good docker containers requires care
• Not difficult, well worth taking the effort

• “will I get the same result in one year from now?”

• Security: pay attention if you’re running services in your containers

• We can help!

28

Exercises

• Go to http://bit.ly/resops-2020

• Click on ‘Docker Practical’
• Follow the exercises, in any order you like

29

http://bit.ly/resops-2020

