

Porting Research Pipelines into Clouds Architectural considerations (1/3)

David Yuan, Ph.D. Cloud Bioinformatics Application Architect Technology and Science Integration European Bioinformatics Institute, EMBL

Porting into clouds

Research pipelines

- Archive of sequence data, images, publications or ontology information
- Pipelines to analyse data
- Services to aggregate other research tools or databases

Good candidates for the cloud!

- You know your pinch-points.
- Cloud is mature and fastevolving.
- Lift-n-shift is possible.
- Being cloudnative provides benefit way over cost.

Pros

- Stable infrastructure
- Global collaboration by default
- Flexible resource management
- Potential cost reduction
- Latest and greatest technology stack

- Accounting model is very different.
- The whole field is still growing.
- Beginners often face steep learning curves.

Research pipelines

- Archive of sequence data, images, publications or ontology information
- Pipelines to analyse data
- Services to aggregate other research tools or databases

Good candidates for the cloud!

- You know your pinch-points.
- Cloud is mature and fastevolving.
- Lift-n-shift is possible.
- Being cloudnative provides benefit way over cost.

Pros

- Stable infrastructure
- Global collaboration by default
- Flexible resource management
- Potential cost reduction
- Latest and greatest technology stack

- Accounting model is very different.
- The whole field is still growing.
- Beginners often face steep learning curves.

Research pipelines

- Archive of sequence data, images, publications or ontology information
- Pipelines to analyse data
- Services to aggregate other research tools or databases

Good candidates for the cloud!

- You know your pinch-points.
- Cloud is mature and fastevolving.
- Lift-n-shift is possible.
- Being cloudnative provides benefit way over cost.

Pros

- Stable
 infrastructure
- Global collaboration by default
- Flexible resource management
- Potential cost reduction
- Latest and greatest technology stack

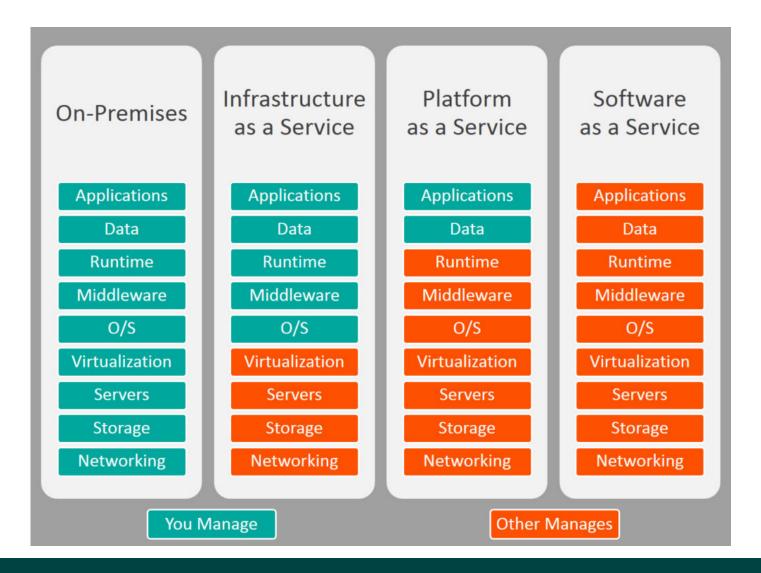
- Accounting model is very different.
- The whole field is still growing.
- Beginners often face steep learning curves.

Research pipelines

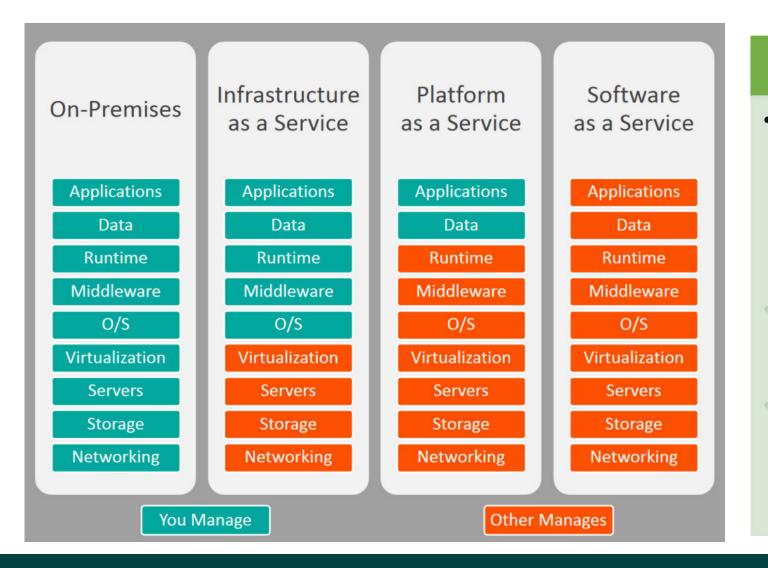
- Archive of sequence data, images, publications or ontology information
- Pipelines to analyse data
- Services to aggregate other research tools or databases

Good candidates for the cloud!

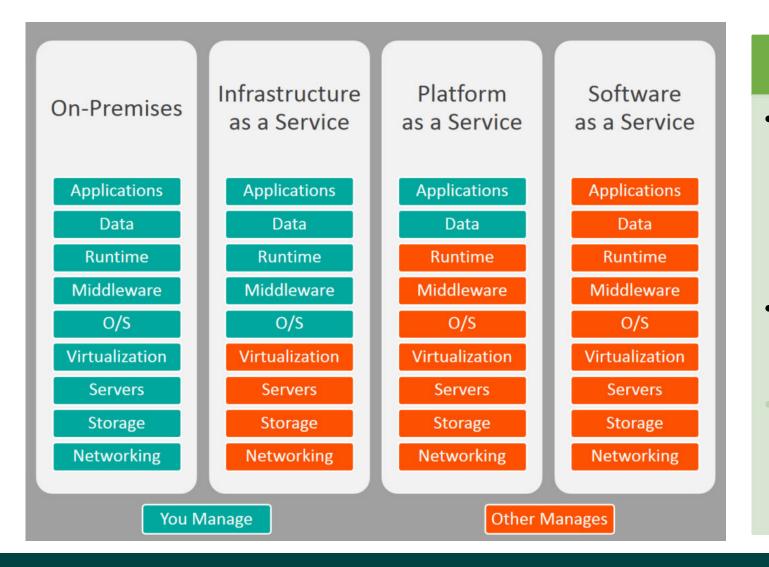
- You know your pinch-points.
- Cloud is mature and fastevolving.
- Lift-n-shift is possible.
- Being cloudnative provides benefit way over cost.

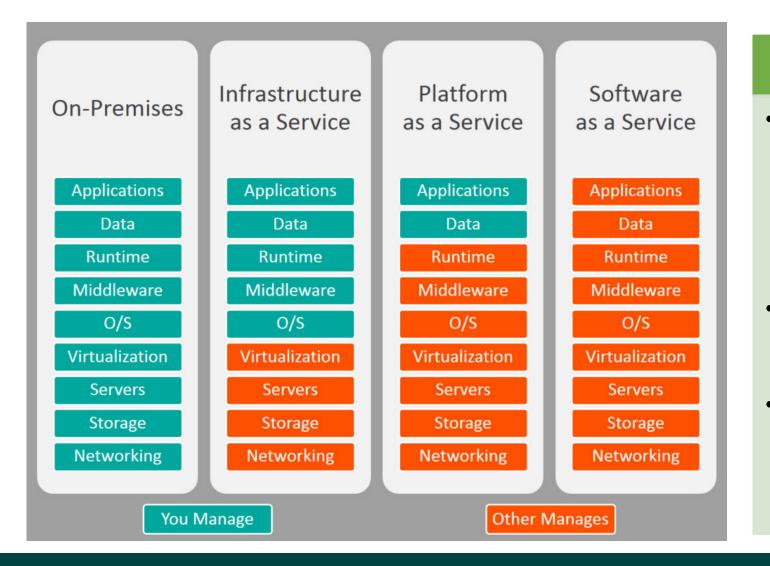

Pros

- Stable infrastructure
- Global collaboration by default
- Flexible resource management
- Potential cost reduction
- Latest and greatest technology stack


- Accounting model is very different.
- The whole field is still growing.
- Beginners often face steep learning curves.

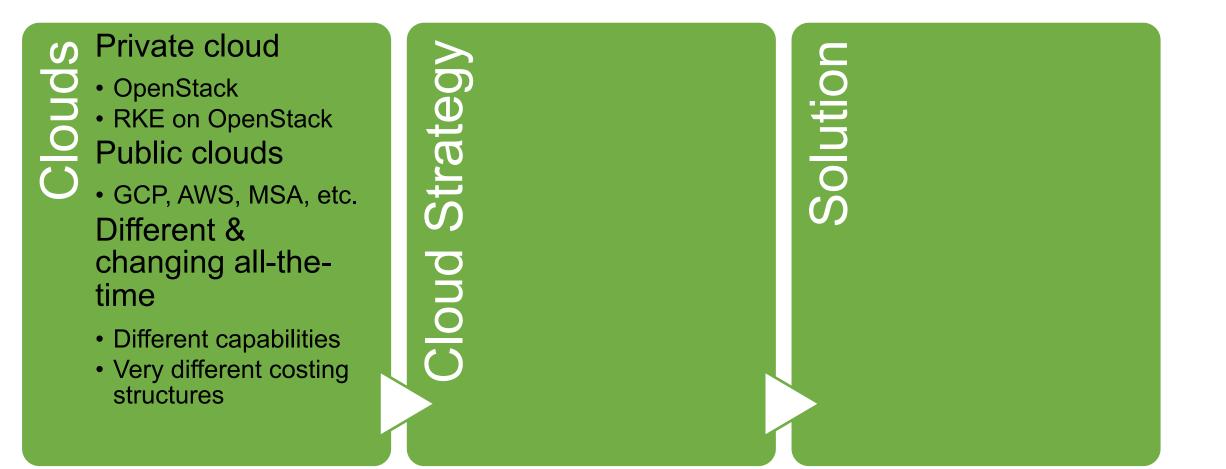
Cloud overview – what?




* - as a Service

- Infrastructure as a Service (laaS)
 - OpenStack
 - GCP, AWS, MSA
 - RKE on OpenStack
 - GKE, EKS, AKS
- Platform as a Service (PaaS)
 - AWS Lambda
 - Azure App Service
 - Software as a Service (SaaS)
 - AWS Route53
 - Oracle Autonomous Data
 Warehouse Cloud

* - as a Service


- Infrastructure as a Service (laaS)
 - OpenStack
 - GCP, AWS, MSA
 - RKE on OpenStack
 - GKE, EKS, AKS
- Platform as a Service (PaaS)
 - AWS Lambda
 - Azure App Service
 - Software as a Service (SaaS)
 - AWS Route53
 - Oracle Autonomous Data
 Warehouse Cloud

* - as a Service

- Infrastructure as a Service (laaS)
 - OpenStack
 - GCP, AWS, MSA
 - RKE on OpenStack
 - GKE, EKS, AKS
- Platform as a Service (PaaS)
 - AWS Lambda
 - Azure App Service
- Software as a Service (SaaS)
 - AWS Route53
 - Oracle Autonomous Data Warehouse Cloud

Cloud overview – which?

Cloud overview – which?

Private cloud S

- OpenStack
- RKE on OpenStack Public clouds
- Cloud • GCP, AWS, MSA, etc. **Different** & changing all-thetime
 - Different capabilities
 - Very different costing structures

- Strateg • Vendor API – latest &
 - greatest but vendor
 - lock-in
 - Open source API –
 - less up-to-date but

- Both cloud centric
- ono **Pipelines in clouds**
 - Cloud-agnostic
 - Cloud-native
 - Easy-to-use for programmers and researchers

Solution

Cloud overview – which?

Private cloud S

- OpenStack
- RKE on OpenStack Public clouds
- Cloud • GCP, AWS, MSA, etc. **Different** & changing all-thetime
 - Different capabilities
 - Very different costing structures

Cloud APIs

- Vendor API latest & Strate
 - greatest but vendor
 - lock-in
 - Open source API –
 - less up-to-date but

- Both cloud centric
- n 0 **Pipelines in clouds**
 - Cloud-agnostic
 - Cloud-native
 - Easy-to-use for programmers and researchers

Docker & K8S

- utio Well-known& proven
 - Advantages over VMs
 - New paradigm
 - CI/CD toolchains
- Ũ • For best practice **Cloud consultancy**
 - Architectural advises
 - Cloud-native designs

Docker & Kubernetes

- De-facto standards of runtime & orchestration
- Docker
 - Runtime architecture
 - Packaging tool
- Kubernetes
 - Orchestration
 engine

Benefit over VMs

- Light-weight
- Very high portability
- Seamless integration with CI/CD
- Across hardware boundaries
- Portability, scalability, high availability, disaster recovery & maintainability

Growing pains

- More difficult to use
- Dependent on VMs in some clouds
- Tricky integration with POSIX filesystems

Best practices

- KISS principle
- Security
 - Official Docker images
 - Non-root ID
- Compute, data & configuration
 - Stateless container
 - Data on storage
 - StatefulSet for configuration

Docker & Kubernetes

- De-facto standards of runtime & orchestration
- Docker
 - Runtime architecture
 - Packaging tool
- Kubernetes
 - Orchestration
 engine

Benefit over VMs

- Light-weight
- Very high portability
- Seamless integration with CI/CD
- Across hardware boundaries
- Portability, scalability, high availability, disaster recovery & maintainability

Growing pains

- More difficult to use
- Dependent on VMs in some clouds
- Tricky integration with POSIX filesystems

Best practices

- KISS principle
- Security
 - Official Docker images
 - Non-root ID
- Compute, data & configuration
 - Stateless container
 - Data on storage
 - StatefulSet for configuration

Docker & Kubernetes

- De-facto standards of runtime & orchestration
- Docker
 - Runtime architecture
 - Packaging tool
- Kubernetes
 - Orchestration
 engine

Benefit over VMs

- Light-weight
- Very high portability
- Seamless integration with CI/CD
- Across hardware boundaries
- Portability, scalability, high availability, disaster recovery & maintainability

Growing pains

- More difficult to use
- Dependent on VMs in some clouds
- Tricky integration with POSIX filesystems

Best practices

- KISS principle
- Security
 - Official Docker images
 - Non-root ID
- Compute, data & configuration
 - Stateless container
 - Data on storage
 - StatefulSet for configuration

Docker & Kubernetes

- De-facto standards of runtime & orchestration
- Docker
 - Runtime architecture
 - Packaging tool
- Kubernetes
 - Orchestration
 engine

Benefit over VMs

- Light-weight
- Very high portability
- Seamless integration with CI/CD
- Across hardware boundaries
- Portability, scalability, high availability, disaster recovery & maintainability

Growing pains

- More difficult to use
- Dependent on VMs in some clouds
- Tricky integration with POSIX filesystems

Best practices

- KISS principle
- Security
 - Official Docker images
 - Non-root ID
- Compute, data & configuration
 - Stateless container
 - Data on storage
 - StatefulSet for configuration