
Architectural considerations (2/3)

Porting Research Pipelines into Clouds

David Yuan, Ph.D.

Cloud Bioinformatics Application Architect

Technology and Science Integration

European Bioinformatics Institute, EMBL



Porting into clouds

Cloud overview

Why clouds

What the *-aaS

Which clouds

Container & 
orchestration

Important considerations
Portability

Scalability

High availability

Disaster Recovery

Maintainability

Research pipelines
Cost, budget & 

funding
Data-driven 
architecture

Lift-n-shift vs. 
cloud-native Monitoring



Important considerations

Portability
• Poor portability between clouds
• Docker & K8S: De-facto standards
• Major decision to be made as early as 

possible

Scalability
• Cloud scaling up and scaling down 

limited by hardware
• Docker & K8S: vertical scaling, 

horizontal scaling, autoscaling across 
hardware boundary

• Storage IO often being the bottleneck 

High availability
• Cloud better than traditional DCs
• K8S: ReplicaSet & StatefulSet across 

hardware boundary
• Shared POSIX filesystems: single 

point of failure

Disaster Recovery
• Double or triple redundancy: resilient 

to disaster
• Infrastructure-as-code: faster recovery
• K8S: clear separation of compute, 

configuration and data
• Shared POSIX filesystems: single 

point of failure

Maintainability
• Cloud usually no scheduled downtime
• K8S: eliminating scheduled downtime

• Rolling up upgrade K8S nodes, 
underlying hardware, application

• Auto-recovery built in



Important considerations

Portability
• Poor portability between clouds
• Docker & K8S: De-facto standards
• Major decision to be made as early as 

possible

Scalability
• Cloud scaling up and scaling down 

limited by hardware
• Docker & K8S: vertical scaling, 

horizontal scaling, autoscaling across 
hardware boundary

• Storage IO often being the bottleneck 

High availability
• Cloud better than traditional DCs
• K8S: ReplicaSet & StatefulSet across 

hardware boundary
• Shared POSIX filesystems: single 

point of failure

Disaster Recovery
• Double or triple redundancy: resilient 

to disaster
• Infrastructure-as-code: faster recovery
• K8S: clear separation of compute, 

configuration and data
• Shared POSIX filesystems: single 

point of failure

Maintainability
• Cloud usually no scheduled downtime
• K8S: eliminating scheduled downtime

• Rolling up upgrade K8S nodes, 
underlying hardware, application

• Auto-recovery built in



Important considerations

Portability
• Poor portability between clouds
• Docker & K8S: De-facto standards
• Major decision to be made as early as 

possible

Scalability
• Cloud scaling up and scaling down 

limited by hardware
• Docker & K8S: vertical scaling, 

horizontal scaling, autoscaling across 
hardware boundary

• Storage IO often being the bottleneck 

High availability
• Cloud better than traditional DCs
• K8S: ReplicaSet & StatefulSet across 

hardware boundary
• Shared POSIX filesystems: single 

point of failure

Disaster Recovery
• Double or triple redundancy: resilient 

to disaster
• Infrastructure-as-code: faster recovery
• K8S: clear separation of compute, 

configuration and data
• Shared POSIX filesystems: single 

point of failure

Maintainability
• Cloud usually no scheduled downtime
• K8S: eliminating scheduled downtime

• Rolling up upgrade K8S nodes, 
underlying hardware, application

• Auto-recovery built in



Important considerations

Portability
• Poor portability between clouds
• Docker & K8S: De-facto standards
• Major decision to be made as early as 

possible

Scalability
• Cloud scaling up and scaling down 

limited by hardware
• Docker & K8S: vertical scaling, 

horizontal scaling, autoscaling across 
hardware boundary

• Storage IO often being the bottleneck 

High availability
• Cloud better than traditional DCs
• K8S: ReplicaSet & StatefulSet across 

hardware boundary
• Shared POSIX filesystems: single 

point of failure

Disaster Recovery
• Double or triple redundancy: resilient 

to disaster
• Infrastructure-as-code: faster recovery
• K8S: clear separation of compute, 

configuration and data
• Shared POSIX filesystems: single 

point of failure

Maintainability
• Cloud usually no scheduled downtime
• K8S: eliminating scheduled downtime

• Rolling up upgrade K8S nodes, 
underlying hardware, application

• Auto-recovery built in



Important considerations

Portability
• Poor portability between clouds
• Docker & K8S: De-facto standards
• Major decision to be made as early as 

possible

Scalability
• Cloud scaling up and scaling down 

limited by hardware
• Docker & K8S: vertical scaling, 

horizontal scaling, autoscaling across 
hardware boundary

• Storage IO often being the bottleneck 

High availability
• Cloud better than traditional DCs
• K8S: ReplicaSet & StatefulSet across 

hardware boundary
• Shared POSIX filesystems: single 

point of failure

Disaster Recovery
• Double or triple redundancy: resilient 

to disaster
• Infrastructure-as-code: faster recovery
• K8S: clear separation of compute, 

configuration and data
• Shared POSIX filesystems: single 

point of failure

Maintainability
• Cloud usually no scheduled downtime
• K8S: eliminating scheduled downtime

• Rolling up upgrade K8S nodes, 
underlying hardware, application

• Auto-recovery built in


