

EMBL-EB

Porting Research Pipelines into Clouds Architectural considerations (2/3)

David Yuan, Ph.D. Cloud Bioinformatics Application Architect Technology and Science Integration European Bioinformatics Institute, EMBL

Porting into clouds

Cloud overview

Portability

Poor portability between clouds
<u>Docker & K8S</u>: De-facto standards
Major decision to be made as early as possible

High availability

Disaster Recovery

Portability

Poor portability between clouds
<u>Docker & K8S</u>: De-facto standards
Major decision to be made as early as possible

Scalability

- Cloud scaling up and scaling down limited by hardware
- <u>Docker & K8S</u>: vertical scaling, horizontal scaling, autoscaling across hardware boundary
- Storage IO often being the bottleneck

High availability

Disaster Recovery

Portability

Poor portability between clouds
<u>Docker & K8S</u>: De-facto standards
Major decision to be made as early as possible

Scalability

- Cloud scaling up and scaling down limited by hardware
- <u>Docker & K8S</u>: vertical scaling, horizontal scaling, autoscaling across hardware boundary
- Storage IO often being the bottleneck

High availability

- Cloud better than traditional DCs
- <u>K8S</u>: ReplicaSet & StatefulSet across hardware boundary
- Shared POSIX filesystems: single point of failure

Disaster Recovery

Portability

Poor portability between clouds
<u>Docker & K8S</u>: De-facto standards
Major decision to be made as early as possible

Scalability

- Cloud scaling up and scaling down limited by hardware
- <u>Docker & K8S</u>: vertical scaling, horizontal scaling, autoscaling across hardware boundary
- Storage IO often being the bottleneck

High availability

- Cloud better than traditional DCs
- <u>K8S</u>: ReplicaSet & StatefulSet across hardware boundary
- Shared POSIX filesystems: single point of failure

Disaster Recovery

- Double or triple redundancy: resilient to disaster
- Infrastructure-as-code: faster recovery
- <u>K8S</u>: clear separation of compute, configuration and data
- Shared POSIX filesystems: single point of failure

Portability

Poor portability between clouds
<u>Docker & K8S</u>: De-facto standards
Major decision to be made as early as possible

Scalability

- Cloud scaling up and scaling down limited by hardware
- <u>Docker & K8S</u>: vertical scaling, horizontal scaling, autoscaling across hardware boundary
- Storage IO often being the bottleneck

High availability

- Cloud better than traditional DCs
- <u>K8S</u>: ReplicaSet & StatefulSet across hardware boundary

EMBL-EB

• Shared POSIX filesystems: single point of failure

Disaster Recovery

- Double or triple redundancy: resilient to disaster
- Infrastructure-as-code: faster recovery
- <u>K8S</u>: clear separation of compute, configuration and data
- Shared POSIX filesystems: single point of failure

- Cloud usually no scheduled downtime
- <u>K8S</u>: eliminating scheduled downtime
- Rolling up upgrade K8S nodes, underlying hardware, application
- Auto-recovery built in