
Advanced Kubernetes
Part I - Deployment and deployment strategies

Marius Dieckmann1,2,3

Marius.Dieckmann@computational.bio.uni-giessen.de

EMBL-EBI Cloud Consultants4

cloud-consultants@ebi.ac.uk

1 Justus-Liebig-Universität Gießen

2NFDI4Biodiversity

3de.NBI

4EMBL-EBI

February 9, 2021

Marius.Dieckmann@computational.bio.uni-giessen.de
cloud-consultants@ebi.ac.uk


Preliminary remarks

I The course is designed to be hands-on

I A demo application will be deployed step-by-step

I More advanced techniques will be added

I The focus is to (generally) introduce you concepts and their ideas

I Individual tools implement these concepts and ideas

I These tools are fairly complex, expect things to not work at first try



Program

1. Important basic concepts

1.1 Semantic versioning
1.2 Container building

2. Useful K8s resources

2.1 Secrets
2.2 ConfigMaps
2.3 DownwardAPI
2.4 Labels and Annotations
2.5 Health checks
2.6 Limits and Requests
2.7 StatefulSet

3. Hand-on



Semantic versioning

I Idea: Versions and version bumps have a meaning

I Defined in Backus-Naur Form grammar

I Schema: major.minor.patch - [pre-release/build]

I Often used with leading ”v.”
I Meaning:

I major: Breaking api change
I minor: Major feature update
I patch: Bugfixes

I Used to understand significance of change and decide which new version to deploy

I Used to disambiguate between different release channels (stable, dev, alpha,...)

I Multiple CI/CD tools available that can handle these versioning schema



Container building

I Various options:
I Dockerhub
I Quay.io
I private registries: e.g. Harbor + CI/CD tool
I ...

I Conditional execution of branches/releases

I Tagging based on tags/branches

I Tagging strategy can vary, but should be documented

I Run CI first
I Strategy example:

I Builds on pulls on master and develop with branch tagging
I Builds on releases/tags with SemVer tags



Useful Kubernetes resources



Configuration options etc...

I ConfigMaps:
I Used to store configuration of components in files
I Format independent, yaml or toml are often used
I No need to package configuration with image, no need to rebuild image on config

change
I Can be mounted as files or environment variables
I Not viable for secrets (e.g. passwords)

I Secret
I Similar to ConfigMaps
I Can be used for secrets like passwords
I Can be mounted as files or environment variables

I Downward API
I Volume mount to get information about the deployment
I Can e.g. be used to get the current container tag which indicates the deployed

version



Deployments in Kubernetes

Deployment are the fundamental building blocks of almost all long-running services in
Kubernetes like websites or API endpoints
I Definitions:

I Application: A set of individually deployed components, e.g.: webfrontend, backend,
database

I Service: Kubernetes service

I Label and annotations:
I Label describe the deployment and can be used in select statements
I Annotations also describe the deployment, but are not used in select statements,

they are often used to apply advanced config options
I Labels are often composed, e.g. indicating version, application and application

component



Deployments - Nice extras

I Deployments use by default a rolling update mechanism; pods are updated one by
one, therefor a service should always be available

I Build-in health checks for API endpoints
I shell cmd or http request
I liveness probe: checks periodically if a program is still in working state
I startup probe: waits until pod is ready, e.g. if programs needs to load large file

I Pod is considered ”Running” only when health checks succeed

I Horizontal pod autoscaling (HPA) to automatically scale a deployment



Requests and Limit

I Can target any resource (including custom ones)

I Should be attached to every container
I Requests:

I Used for scheduling
I K8s will run pods with this request only on nodes with sufficient resource
I Scheduling will be delayed if insufficient resources are available

I Limit
I Used to determine maximum resource amount
I Needs to be ≥ Request
I Going over limit can cause pods to be evicted



Scheduling

I Priority: If higher, lower pods will be evicted

I Non-preempting: No active eviction
I Policies:

I Scenario 1: Pod within Requests & Limits
I Only evicted on priority or system pressure

I Scenario 2: Pod over Requests but within Limits
I Pod can be evicted if scheduler requires space

I Scenario 2: Pod over Requests & over Limits
I Pod will be evicted or throttled (uncompressible vs. compressible)



HPA - Horizontal Pod Autoscaling

I Kubernetes can automatically scale deployments

I Controller called Horizontal Pod Autoscaler

I Define min/max number of running pods

I Define target metrics (e.g. CPU, Memory or custom)

I Can be applied to existing Deployment

I Requires Limits and Requests attached

I Requires metrics-server



Excursus: StatefulSet

I Designed for applications that require state
I fix IP adresses
I deterministic DNS addresses and pod names
I multiple single attach PVs based on PV templates
I Ordered/Graceful deployment/scaling
I Ordered update rollouts

I Use-cases:
I Certain distributed systems that require fixed IPs
I Distributed databases (MongoDB, MySQL, redis)



Excursus: StatefulSet



Hands-on part 1

I Instructions can be found in the following repo:
https://github.com/MariusDieckmann/CanaryDemo

https://github.com/MariusDieckmann/CanaryDemo

