
Advanced Kubernetes - Service Mesh
Part II - Service Mesh

Marius Dieckmann1,2,3

Marius.Dieckmann@computational.bio.uni-giessen.de

EMBL-EBI Cloud Consultants4

cloud-consultants@ebi.ac.uk

1 Justus-Liebig-Universität Gießen

2NFDI4Biodiversity

3de.NBI

4EMBL-EBI

February 9, 2021

Marius.Dieckmann@computational.bio.uni-giessen.de
cloud-consultants@ebi.ac.uk


What is a service mesh?

I A service mesh connects individual components of applications

I Usually implemented as a orchestrated network of proxies
I Allows advanced management of network traffic

I Automated mTLS between components
I Traffic introspection
I Load-Balancing
I Traffic splitting
I (sometimes) Destination rules

I Various implementations
I Linkerd
I Istio
I ...

I Normally handles HTTP and gRPC

I Multicluster gateway



mTLS and traffic introspection

I All services in a mesh use mTLS

I Certificates and rotation are managed by the service mesh

I Some meshes (Istio) allow destination rules based on mTLS

I Connections are automatically secured using the proxy
I The service-mesh can intercept and monitor data at its proxies

I Display data routes
I Requests statistics
I Header inspection



Load-balancing and traffic splitting

I Load balancing based on traffic metrics
I Both for HTTP/1.1 & HTTP/2

I Traffic routing on HTTP/2 based on requests

I Split traffic between services
I Split traffic between canary and production release
I Fault injection



Canary Deployments

I Named after canaries in coal mines to detect toxic gases (carbon monoxide)

I Introduced to test updates in production environment

I Old and new version run in parallel, traffic is gradually shifted to new version

I While shifting, metrics (reponse time, request-success-rate) are measured

I Shifting is based on these metrics and can be halted/rolled back automatically
I Can be configured:

I Metrics and limit values
I Timings
I Additional HPA on canary releases



Blue/Green Deployments

I Old deployment strategy (Often used in mainframe systems)

I Two separate environment; one is production, the other staging

I Updates are deployed to staging

I Staging is permanently tested internally

I Requests are shifted from one deployment to the other

I The other deployment becomes the production environment

I The former production deployment is kept as backup and can be shifted back to

I After a while the former production deployment becomes the new staging
deployment

I The cycle is permanently repeated



Automated deployment updates

I To fully automate a release cycle it is necessary to update the image of a
deployment

I Various tools available: we use keel

I Deployments will be updated automatically based on SemVer rules

I Updates can be registered via webhook or polling

I Update notifications can be send to various services like rocketchat/slack/...



Linkerd

I Implementation for a service mesh

I Baseline functionality

I Simple graphical dashboard

I Comes with its own proxy implementation
I Features:

I HTTP, HTTP/2 and gRPC proxying
I Configurable timeout and retry handling
I mTLS
I Traffic observation
I Load-Balancing
I Automated proxy injection
I Traffic-split
I Canary/Blue-Green deployments with Flagger
I ...



Linkerd implementation



Canary Deployments Linkerd I

Frontend

Proxy Service

Backend

Proxy

Pod Pod

Figure: Basic application topology: frontend and backend components are connected via a
service and the traffic is routed via local sidecar proxies



Canary Deployments Linkerd II

Figure: Canary application topology: frontend uses the same service as in the basic scenario,
the backend is splitted into two components, a canary and a primary pod. Linkerd with flagger
can route the traffic between them and update images as required.



Hands-on part 2


